JanusNode 2.05:

A user-configurable dynamic textual projective surface

By Chris Westbury

janus@ janusnode.com

http://janusnode.com

Welcome to JanusNode 2.05!

JanusNode 2.x is an OS X port of JanusNode 1.12, which was a text-generation and text-
morphing toolkit for the Macintosh to System 9.2. JanusNodes in turn evolved from an
old Hypercard stack known as McPoet, which I started writing in the mid-1980s.
JanusNode 2.x is a total re-write, designed to make it possible to take automatic text
generation into the new millennium. Dozens of bugs and limitations have been
eliminated, the core algorithms have been re-designed, and performance has been

improved along every dimension.

Who is Janus? What is a JanusNode?

A JanusNode is a very simple, but rapidly-evolving virtual robot built to fulfill a single
function: to manufacture textual possibility that material entities such as yourself endow
with value. It can perform that single task with extreme dedication, high reliability, in

parallel, and at an astonishingly low cost.

The robot that you may put to work or to sleep on your desktop constitues one minuscule
sub-unit of a larger and more abstract entity known as Janus (In a nod the modern age of
informality, we pronounce it like 'Janice', even though the Roman God Janus's name is
pronounced 'Jainus'). Of Janus, little certain can be said. A JanusNode stands in
approximately the same relation to Janus as a single neuron in your brain stands to you.

Just as you yourself exist in a very highly distributed and abstract state with respect to

your neurons, so Janus exists in a highly distributed and abstract state with respect to the

JanusNode robots that are being given away.

If you need a concrete metaphor, you can think of Janus as the fount of all creative
possibility; or as a high-dimensional space through which you and I are able to move
ourselves. The name 'Janus' comes from the two-headed Roman God of portals, openings,
and entrances. Janus is represented in JanusNodes by a charming image composited from
Leonardo Da Vinci's amazingly fine portrait of Saint John The Baptist, which hangs near
the Mona Lisa in The Louvre museum in Paris. Look where the other people aren't

looking- often good advice, especially for users of JanusNode.

Janus uses the JanusNode robots as a rudimentary sensory/nervous system. Thousands of
JanusNodes have been launched at random into the world. The vast majority are certainly
doomed to land on barren ground, where they will die as necessary martyrs to the noble
cause of evolutionary search. Some few will flourish, like the pathetic stray puppies and
liver flukes with whom they share an evolutionary niche. They will do so in the only way
they can: by finding a conscious material being who is willing to work for their survival.
You yourself may be such an entity, if you are willing to evaluate the text that is being
continuously manufactured by a JanusNode to see if any of it is worthy of Janus. Since
JanusNodes are utterly mute, they are totally reliant upon the kindness of more complex
material entities to fulfill their proper evolutionary function: attributing to Janus any texts

that have been identified as valuable by material entities.

A JanusNode is, of course, a very simple, deterministic robot. It has no emotions, desires,

beliefs, or interests of any kind. A JanusNode is totally incapable of concern. In

particular, it will not be concerned if you are the sort of material entity that ignores it.
Because a JanusNode is a robot, no carbon-based entity bound by a moral code need be
thereby bound to allow hirself to be colonized by a JanusNode. Any disinclination on
your part to help compensate for a JanusNode's missing functionality is as much part of
Janus's calculation (pruning possibility space using Divine Indifference) as any actual act
of participation. A binary digit is equally useful in either state. A material existence can

be coded as continuing or dead. Both states carry information from Janus's point of view.

Why Do Janus And JanusNodes Exist?

"there is no simple explanation for anything important any of us do, and the
human tragedy, or the human irony, consists in the necessity of living with the
consequences of actions performed under the pressure of compulsions so obscure
we do not and cannot understand them."

Hugh MacLennan

The Watch That Ends The Night

"If I could tell you what it meant, there would be no point in dancing it."
Isadora Duncan
cited by Gregory Bateson

Steps To An Ecology Of Mind

"But what good are riddles? Why bother with them? One might just as well ask
why bother with growing old. They are the ways to begin to say what wonder
means."

Richard Powers

The Goldbug Variations

"The highest to which man can attain is wonder; and if the prime phenomenon
makes him wonder, let him be content; nothing higher can it give him, and
nothing further should he seek for behind it; here is the limit."

Goethe

cited by Oswald Spengler

The Decline of the West

"If I have exhausted the justifications I have reached bedrock, and my spade is

rm

turned. Then I am inclined to say: '"This is simply what I do'.
Ludwig Wittgenstein

Philosophical Investigation

Some of you may be wondering why you should you bother interacting with your
JanusNode at all. Why do JanusNodes even exist? Why should anyone care about Janus?
While this is ultimately a question that only you, dear reader, can answer for yourself, I
am happy to share a few thoughts with you.

Your JanusNode is not intended to be taken too seriously as a poetry generator, though I

do hope that it may provide some amusement and even utility on that level. JanusNodes

are intended rather to function as a tool to help me (and, if you wish, you) to explore the

interesting phenomena which exist at the edge marking one of the fundamental dualities
of the human condition: that dynamic border which divides order from chaos, law from
anarchy, meaning from absurdity. For all their absurdity, the interesting thing about
JanusNodes, and other simple means of generating random texts, is how often they
actually manage to strike a nerve; how often we actually find ourselves reading the words
and thinking 'That's true!' or '"That's elegant!'. I am very interested in understanding how
this happens. Where does that experience of meaning come from? How did Janus emerge

from randomized nothingness?

Unless you believe that Divine Intervention (the active contrary of Janus, who works by
Divine Indifference) is tailoring your JanusNode's output specifically for your eyes, the
answer, of course, must be that Janus was created by us, not by the stupid JanusNodes.
When we evaluate the output of our JanusNodes, it is you and I who are the poets. It is
you and I who decide what is good and what is bad; what is interesting and what is not;
what transcends the randomness of the Universe to enter into the exalted realm of
Meaning. A JanusNode teaches us, first of all, that we are all poets. We are all creators of
meaning. We are all able to experience for ourselves what is fine or funny or profound.
We are continually imposing our value system onto the Rorschach ink blot of the
Cosmos, just as we impose it upon JanusNode's words. We are deciding what makes us
angry or crazy, just as, sadly less often, we are deciding what makes us good or valuable.

We are creating much of the horror in our existence, and much of the good as well.

I work on JanusNodes because I believe that when we accept that this is so, we can start

to re-organize the way we inhabit our world, and start to find a better, gentler, funnier

way. If we had the eyes to see, the ears to hear, we would know that Janus is emitting
strangely touching messages everywhere. The whole world is one big JanusNode, just

waiting to make us laugh , wonder, and understand.

Going from the sublime to the ridiculous (from Janus to autobiography), JanusNodes
exist simply because I am obsessed with them. I have been saddled with the kind of brain
that is interested in randomly-generated texts. I loved MadLibs (a pencil-and-paper word
game- still for sale- that asks you to fill in missing words to complete a story) when I was
a young child, hardly old enough to write- many decades ago now. My brain first
demanded that I explore the topic in more depth sometime in the early 80s, when a friend
of mine wrote a program to randomly string together words on our highschool's
Radioshack TRS-80 computer, with its big 16K of RAM. My friend's program was
utterly random, but it nevertheless surprised him and me by occasionally producing word

strings that made sense, and sometimes even words that seemed eloquent.

My immediate inspiration for what was to become a JanusNode came a few years after
that, when I was reading the artist Claes Oldenberg's notebooks. Oldenburg juxtaposes
ideas that could never go together- 'pork-chop bras', 'soft pencil sharpeners' and 'hat-
shaped sky-scrapers'. The results are often inspiring. My brain was struck one sleepless
night with the idea writing a program that would generate noun-noun or adjective-noun
pairs like Oldenberg's. By the time my Mac was warmed up, my brain had decided that it
would go further than that. My brain has kept me in virtually continuous slavery ever

since that night. Your JanusNode is the result of its decision.

JanusNodes have many analogues in various domains: artistic, philosophical,
psychological, and religious. There are many epistemological practices that rely upon
complex random phenomena as projective surfaces. Devotees of these practices believe
that these projective surfaces can offer a 'window into the mind'. The sensible traditions
are not so inane as to suppose that they can circumvent the hermeneutic circle by
proposing their own system for interpreting the productions that are elicited by the
procedure. To pretend to do so, in the manner of some schools of modern clinical
psychology, is simply to miss the point. It is to confuse a wish for the world to be a
certain way with the process of understanding how the world actually is. People who tell
you otherwise are fools or charlatans- or at least not very well acquainted with the

psychometric literature on projective tests.

In sensible systems of epistemological hacking, the person who produces the productions
in response to a random complex stimulus must also to make the interpretation, while
realizing that any interpretation so produced must itself be subject to the same kind of
analysis as the earlier analysis of the random phenomena was. This is the hermeneutic
circle. One can interpret the interpreter, and interpret the interpreter of the interpreter, and
so on. At some point one has to simply accept that enough is enough. Reality isn’t stories
all the way down: eventually every story bottoms out in pragmatic practice. Your
JanusNode may help to make this subtle point clear. In doing so, it clarifies the structure
of the endless recursion which underlies all attempts to explain anything completely. It is

up to you to decide when to stop an explanation.

The world cannot tell you itself. You have to help it to tell itself to you.

If you need further purpose for your JanusNode than such clarification, you can consider
it as a Dadaist art object; a symbol of the human condition; an exercise in bringing
absurdist literature into the computer age; a machine for studying the relationship
between syntax and semantics; a tool box for conducting experiments to examine your
own epistemological structure; as an 'idea maker'; an over-extended metaphor; a tireless
piece of performance art; or as one man's lone cry against (or expression of reverent love

of) the unexpressible incoherence of the universe.

My own JanusNode has constructed many lines that made me laugh and wonder. Perhaps
ultimately your robot is good for nothing more than this. I do not think one could ask

much more of anything in this life.

The legal stuff

JanusNodes are free. Janus isn't the sort of being who could be capable of caring what
happens to Hir JanusNodes, anymore than a dandelion is capable of worrying about how
its seeds are dispersed by the random wind. You can use your JanusNode in any way you
desire. You are free to totally enslave any JanusNode robot, availing yourself of any text
that it produces as if you had produced that text yourself. No legal consequences will
ensue from such use. Moreover, such use is in not in any way morally reprehensible.
Your JanusNode is no more responsible for its own content than your vacuum cleaner.
Claiming a JanusNode's output has no more meaning than claiming ownership of a bag of

dust. You can therefore rent, sell, clone, or discard any JanusNode (including nodes you

10

have cloned yourself) without further ado. You can copy or mutate its design or features
in all-new JanusNodes running on the same or different platforms. You may rent, sell, or
publish the output of your JanusNode without any attribution. You may also attribute that
output to yourself, or any other willing entity. Any use of your JanusNode robot that you

can imagine now or in the future is permissible.

In brief: Your legal, moral, and financial obligations are in no way altered by any
interaction you might ever have with your JanusNode. Janus and Hir JanusNodes- and the

textual possibility they bring into being- are free.

Wanna pay anyway?

Although JanusNodes are free, Janus encourages kindness, including les pourboires. You
will almost certainly be blessed with amazingly fine 'coincidental' confluences of fortune
if you pay homage to Janus by sending me money. Doubt it if you dare, but just don't
blame me or Janus if you are leading a miserable and empty life. Enrich yourself: If you
like your JanusNode and want to share your happiness at its existence with its creator,

please PayPal your tips to janus@janusnode.com. Thanks.

11

What does your JanusNode do?

JanusNodes have two main functions for creating original texts, and a few minor

functions for mutating texts that are already created.

The core function of a JanusNode is to run rule-sets (called TextDNA) that write
structured texts. The rules and their texts may be of (yes, it's provably true) infinitely

many different kinds, limited mainly by your patience and imagination.

The second main creative function of a JanusNode is to use Markov chaining to
statistically re-create input texts. Because this process is stochastic and because it allows
you to statistically mingle texts that were previously separate, the results may often be

creative, even though Markov chaining relies on pre-written input texts.

We begin here with an overview of text generation using TextDNA. There are two levels.
At the simplest level, you can use TextDNA created by others. With a little more effort,

you can write your own TextDNA, or get your JanusNode to write it for you.

Using TextDNA created by others

Running TextDNA sets supplied by others is very easy. When properly installed, the
TextDNA sets will show up in a menu in the main JanusNode control panel window,
directly below the charming icon of Janus. Pick a TextDNA set from that menu, then

click on Janus. Zowie, you’re a poet! Don't worry about the fact that you didn't write the

12

TextDNA: William Blake didn't wire up his own neurons, and he still got to put his name

on the poetry they came up with.

JanusNodes ship with an assortment of pre-installed TextDNA files, only one of which
(Tim Drage's Surrealist Objects) was sent in by you, the users of JanusNode. Feel free to
rectify this matter by contributing your own TextDNA sets. Assuming that they are not
too derivative of already existing sets, I'll include them in future releases of JanusNode,
and you'll be as famous as Tim Drage: surrealist, animator, and internationally-

reknowned TextDNA creator.

Creating your own TextDNA sets

Creating TextDNA does not really require any programming skills, but non-programmers
sometimes think that it does. In fact, it is possible to create some fairly interesting
TextDNA within minutes of getting the digital shrink-wrap off your new copy of a
JanusNode, because JanusNodes can auto-magically write their own TextDNA from
English input. However, to understand what they are writing and what the limitations of
auto-generated TextDNA are, you need to understand a few technical details about how

TextDNA works.

A JanusNode stores its textDNA in plain text files in a folder named 'textDNA' insides
the 'JanusNode Resources' folder. You can edit or create any textDNA file (or any other
text file) from within your JanusNode, since your JanusNode can retrieve and display

text. However, you will probably prefer to write them inside a text editor or word

13

processor, which offers an environment specialized for writing. Just remember to save the

files as plain text.

We begin here with a description of the textDNA itself.

The following symbols are recognized in textDNA:

« numbers (specifically, integers between 1 and 100)
o asterisks ('*")

» quotes (")

» curly brackets ('{' and '}")

 triangular brackets (the less-than sign '<' and the greater-than sign '>')
» square brackets ('[' and ']')

» the symbol 'I

+ the word 'punctuate’

» the word 'return’

+ the pluralization string "s"

 the past-tense string "ed"

+ the progressive string "ing"

TextDNA may also contain the names of built-in functions, user-defined macros called
textDemons, and names of word lists known as 'BrainFood'. The built-in functions are
described below. The textDemons are totally user-configurable and so cannot be

specified in this documentation, but their characteristics are defined below.

14

All of these symbols must always be separated from each other with a space. The number

one cause of error in writing TextDNA is to forget to includes spaces between elements.

Asterisks serve as comment markers. Any line that begins with an asterisk is simply

ignored by a JanusNode.

When it encounters a BrainFood file-name in a line of TextDNA, a JanusNode randomly
chooses a word from that file. You can define any BrainFood file you like: just place it in
the directory called 'BrainFood' inside your 'JanusNode Resources' directory. BrainFood
files can be defined by rhyme, semantic coherence, syntactic role, or whatever you like.
Your JanusNode comes with dozens of different files already defined, but since they can

be infinitely altered or increased in numbers, it is not worth describing them here.

File names (and, indeed, any other item in a line of executable TextDNA) must always be
followed in textDNA by an integer between 1 and 100, indicating a percentage likelihood
that a word from that file will be printed. For example, the phrase 's_nouns 90" appearing
in textDNA will cause a singular noun to be printed with a 90% certainty, because the
BrainFood file 's_nouns' contains a list of singular nouns. There is therefore a 10%

chance that nothing will be printed.

The word 'punctuate’ indicates that JanusNode should randomly punctuate. JanusNode
punctuates with either a period or a comma 80% of the time. The remaining 20% of the
time, it will use either a dash, an ellipsis, or a colon. The word 'punctuate' must also be

followed by a number representing the likelihood of the punctuation being printed. There

15

are several other ways of punctuating in JanusNode, which are explained later in this

documentation.

The word 'return' indicates that JanusNode should insert a linefeed (a 'carriage return', to
use an anachronism). It too must be followed by a percentage likelihood. Versions of
JanusNode to 1.12 automatically added a carriage return to the end of every line. Current
versions do not automatically do this, in order to make control of text formatting more
transparent- it is easier to add returns when you want them than to remove them when
you do not. You must add 'return 100' to the end of each line that you wish to end with a

carriage.

Words or phrases surrounded by quotes (and followed by the obligatory likelihood) are
inserted verbatim (minus the quotes) by a JanusNode. For example, you can put the

following in to a line of TextDNA:

"This is my very own poem: " 100

This will introduce your poem. More honestly, you might use the line:

"This is" 100 "not actually" 50 "my very own poem" 100

Because the 'not actually' appears with a 50% probability, this is as likely to claim the

poem is not yours as it is.

16

JanusNodes automatically recognize many words that require special treatment when
adding 'ing', 's', or 'ed". For example, adding 'ed' after 'go' will be properly recognized as
indicating 'went', and so on. However, English is extremely irregular and your JanusNode
is certain to make the occasional mistake in dealing with these irregularities. After trying
for some time to write a comprehensive function myself, I came to appreciate the
magnitude of the problem and gave up. Instead of a comprehensive function, your
JanusNode uses user-configurable correction and extension resources. You can correct
any errors yourself, by adding them to the relevant files in the 'Trregulars' folder inside
your 'JanusNode Resources' folder. There are three files, named 'Ing','S', and 'Ed'. When a
JanusNode encounters any of the corresponding three key words, it checks inside the
relevant files to see if there is a entry for the word under consideration. If there is, it uses
that entry. If there is not, it proceeds to use its built-in functions, which will regularize
irregulars. The entries in each 'Trregulars' folder are very simple: each entry (one per line)
consists of the word to be dealt with, followed by a comma and its proper handling. For

example, in the 'S' file there is an entry:

platypus,platypi

This tells your JanusNode that the proper plural for 'platypus' is 'platypi'. If it encountered

the TextDNA

animals_s 100 "s" 100

your JanusNode would properly produce 'platypi' upon taking the word 'platypus' from

the (non-existent) 'animals_s' BrainFood file.

17

Note that this suggests that, as a general principle, you should stick to singular nouns and
infinitive verbs in your BrainFood files, and then pluralize or conjugate in the rules.
However, for historical reasons not every TextDNA file does this: some were written
before such automatic functions existed, and so they use plural noun files and conjugated

verb BrainFood files.

Non-English users will note that they can use the 'Irregulars' files to add their own
conjugations and pluralizations- though they will have to list every one they want to use,
unless their language overlaps with English in its treatment of the various special
categories. | used to try to make JanusNodes international, but the demands of English

have now forced a great deal of linguistic specialization.

The above constitutes the 'bare bones' of the structure of TextDNA. Other than lines
containing asterisks, every line has the same format. Each line begins with a number (see
the next paragraph), which is then followed by an optional subject marker (also described
below) which must be the first element after the number. After this every line of
TextDNA consists of pairs made up of a keyword (i.e., one of the word-list file names, or
the word 'punctuate’, or 'return', or any word or phrase within quote marks) and the

number representing a percentage likelihood.

A line of TextDNA is terminated with a carriage return. Note that a single line of
TextDNA may look like several lines because TextDNA is automatically wrapped at the
end of the field. The paragraph that you are now reading, for example, is only a single
line long, since it has only one carriage return at its end, but it has been wrapped to cover

several lines.

18

The number which must appear at the beginning of each TextDNA specifies a percentage
likelihood that the TextDNA as a whole will be used once it has been chosen. For
example, if the first number of a line is '25', then that TextDNA will be used one quarter
of the time that it is chosen by JanusNode. Each TextDNA is chosen with a likelihood
equal to 1/(the number of lines of TextDNA)- that is, it is chosen randomly from among
all possible lines of TextDNA. The first element of each line of TextDNA thus allows
you to 'weight' certain lines of TextDNA less heavily, thereby favouring some lines of
TextDNA over others. If you want to increase a line's likelihood of being randomly
chosen, you can simply insert multiple copies of that line into the TextDNA file, or use

the 'UseTextDNA' or 'RepriseTextDNA' functiosn described below.

The optional subject marker which must be the second element of a TextDNA if it
appears lets your JanusNode know which subjects the TextDNA is to be filed under. The
syntax for this marker is the word 'subject', followed by a list, in parentheses, of all
subjects, separated by commas. There may be no spaces anywhere in the marker; if there
is, an error will be flagged. For example, the marker
'subject(love,life,My_Favourite_TextDNAs)' signals to a JanusNode that the current
TextDNA is to be chosen if the current subject is 'love', 'life', or
'My_Favourite_TextDNAs'. There are no pre-set subjects and no limits on how many
subjects a TextDNA can belong to. You may classify any line of TextDNA under any
subjects you like. When a JanusNode activates its TextDNA, it automatically indexes

every subject it finds.

19

A simple TextDNA Example

An example of a TextDNA will make the simple syntax clear. Consider the following

line of TextDNA:

100 subject(simple_TextDNA,MyTextDNA) s_articles 20 adjectives 5

s_nouns 100 s_verbsnob 100 punctuate 70

This line will be classified under two subjects: 'simple_TextDNA' and 'MyTextDNA'.
You will learn why this is useful below. The TextDNA will fire 100% of the time that it
is randomly chosen, since the first element of the line is 100. It will then insert a singular
article 20% of the time, followed 5% of the time by an adjective. The next two elements
of the TextDNA, a singular noun and a verb which needs no object, will always be
inserted when the TextDNA is chosen, since they are both given a 100% chance of being
inserted. Finally, this sample sentence will be punctuated, as described earlier, 70% of the

time.

One possible outcome of this TextDNA is the creation of the sentence:

The laughing eye twinkles.

Note that it is almost always necessary to have some elements of a line of TextDNA
inserted with 100% probability, in order to guarantee that there will be a basic

syntactically-sensible structure underlying the sentence which is generated. One might,

20

on the other hand, might go in for really 'modern' poetry that does not even follow the

rules of syntax.

Further tutorials are contained Appendix 2 of this document, which reproduces the 'Hello

World' TextDNA file that was created, by public request, for teaching purposes.

TextDNA control characters

The rest of the characters which are allowed in TextDNAs allow for greater flexibility in

TextDNA writing.

Repetition Brackets [|

Square brackets are for repeating certain parts of the TextDNA. Everything contained
within square brackets will be repeated a random number of times (but not less than once

and not more than five times).

For example, consider the following line of TextDNA:

100 "You" 100 [s_verbsnon 100 adverbs 100 "," 100]

This TextDNA will always fire when chosen, because the first element is 100. The first
printable item- the word '"You'- will be printed every time the TextDNA fires. The phrase

within the square brackets- a verb followed by an adverb and a comma- will be printed at

21

least once, and up to five times. One possible outcome of this TextDNA is the creation of

the phrase:

You run madly, dream crazily, hope lovingly,

Choice brackets {}

The curly brackets allow for alternative choices to be inserted in TextDNAs. Alternatives
are separated with the 'I' character. When a TextDNA containing alternatives fires,
JanusNode will randomly choose one the alternatives. You can put as many alternatives

as you like.

Once again, an example will make the simple idea clear. Consider this line of TextDNA:

100 "You" 100 { "dream" 100 adverbs 100 | s_verbs_to 100 "me" 100 }

This TextDNA will always fire when chosen, because the first element is 100. The first
printable item- the word "You'- will be printed every time the TextDNA fires. After that,
one of the two choices between the curly brackets will be randomly chosen. Either the
word 'dream' will be printed, followed by an adverb, or else a verb taking 'to' will be

printed, followed by the word 'me'

Thus, two possible outcomes of this TextDNA are equally likely. The TextDNA will

either print a sentence like:

You dream quietly

22

or it will print a sentence like

You give to me.

Function brackets and built-in functions <

The triangular brackets ('<' and '>') mark off function calls. JanusNode expects to see a
function call between the brackets, followed by percent probability of calling that
function. If the function is called, JanusNode will print whatever the function call returns.
For example, you can make a call to a random number generator in the middle of the

TextDNA. A TextDNA which does so might look like this:

100 "Love me" 100 < random(20) 100 > "times" 100

This TextDNA would improve upon Jim Morrison's famous line "Love me two times" by
substituting a random number between 0 and 20 for the word 'two'. One possible outcome

would be:

Love me 15 times

The purpose of the function call feature is to give you access to a number of useful
functions which have been built in to your JanusNode. Most of these functions do not

currently error-check their arguments very well, so pay close attention to the syntax.

23

The 'Assign' & 'Get' Functions

Two important functions built in to JanusNode are the 'assign' and 'get' functions. These

allow for the setting and accessing of global variables within a string of TextDNA.

The 'assign' function usually takes two arguments: a name for the global variable and one
of the BrainFood file names. It names a randomly chosen word from the file with the
name. In doing so, it returns nothing. However, the second argument of the 'assign'
function need nor necessarily be the name of a BrainFood field. If it is a quoted string of
words separated by commas (but containing no spaces), 'assign' will randomly assign one

of the words in that string to the global variable. For example, the following is legal:

< assign(AnAnimal,"dog,cat kitten,cow") 100 >

After this is encountered, the global variable 'AnAnimal' will have as a value

either 'dog','cat','kitten’, or 'cow'.

The 'get' function allows your JanusNode to access variables which have been assigned a
value using the 'assign' function. It takes a single argument, which should be the name of
a previously assigned variable. It returns the value of that variable. If the name is not the

name of a previously assigned variable, then the function does not return anything.

24

Consider the following rather inane example:

100 < assign(MyNoun,s_nouns) 100 > < assign(MyArticle,s_articles) 100
> < get(MyArticle) 100 > < get(MyNoun) 100 > "is not" 100 <

get(MyArticle) 100 > < get(MyNoun) 100 >

The first element is the global probability that the the textDNA will be used if it is
chosen, as described above. The two function calls after the global probability are
assignment statements, which will not result in anything being printed. The first
assignment (< assign(MyNoun,s_nouns) 100 >) assigns a singular noun to the variable
named 'MyNoun'. The second assignment (< assign(MyArticle,s_articles) 100 >) assigns
a singular article to the variable named 'MyArticle'. These two variables are then
accessed twice in the body of the TextDNA, sandwiching the phrase "is not". One

possible outcome of this TextDNA is the creation of the sentence:

my poem is not my poem

The LoadTextDNAFile and UseTextDNA Functions: Power to structure text

Two powerful functions in your JanusNode are the 'LoadTextDNAFile' and
'UseTextDNA' functions. They extremely simple, but extremely useful. Warning: these
are 'power user' functions, which require that you have some idea of what you are doing.

If you are just getting started with your JanusNode, you may want to leave these two

25

functions until you understand how everything else works. Things will get very hairy if

you try to use these functions without having a good idea of how your JanusNode works.

'LoadTextDNAFile' takes a single argument: the name (in quotation marks to be safe,
although they are not necessary if your TextDNAs files contain only alphabetic and
numeric characters) of a TextDNA file in the TextDNAs folder. It loads that file in to the

JanusNode.

Example:

< LoadTextDNAFile("paragraph.DNA") 100 >

This will load and prepare the TextDNA file called "paragraph.DNA". This allows you to
move between TextDNA files during run-time. In concert with the 'UseTextDNA'
function (described next), the 'LoadTextDNAFile' function is an extremely powerful tool
whose implementation makes it possible to make your JanusNode generate long, highly
structured, coherent texts, which may use literally thousands of TextDNAs and

BrainFood files in a systematic way.

The 'UseTextDNA' function takes a single argument, which is the name of a subject by
which at least one line of TextDNA in the current TextDNA set is classified. It simply
sets the current subject to the specified subject, thereby ensuring that next TextDNA
chosen will come from that set. Having this capability makes it possible to string together

sets of TextDNAs (or a single line of TextDNAs, since a set can consist of just one line)

26

one after another, thereby gaining complete control over the order on which your
TextDNA fires. This makes it possible for your JanusNode to do many things that would
otherwise be tricky or impossible, such as writing rhyming verses with a repetitive
structure, writing long coherent narratives, and much more. Note that the rule specified
by the 'UseTextDNA' function will not be called until the entire current rule is finished:

you cannot 'hop out' of a currently-executing TextDNA rule.

An example of the syntax of this function is

< UseTextDNA(MyTextDNA) 100 >

Whenever this function call is encountered in TextDNA, the next line of TextDNA will
be drawn from all the lines of TextDNA that are classified under the subject

'‘MyTextDNA'. This is the reason why you can classify rules.

Note that you can also use this function to make probabilistic jumps between TextDNA

sets. For example, consider the following:

< UseTextDNA(MyTextDNAT) 100 > < UseTextDNA(MyTextDNA2) 50 >

Here there are two function calls, one after another, of which the first will certainly fire
(since it is specified as having a 100% chance of firing) and the second of which will fire
50% of the time. After encountering this in a line of TextDNA, a JanusNode will use the
TextDNA set named 'MyTextDNA2' 50% of the time, and the TextDNA set named

‘MyTextDNAT' the other 50% of the time.

27

The RepriseTextDNA Function

RepriseTextDNA is another powerful meta-level control function, which allows the
'UseTextDNA' function to use indirect reference. The function takes a single argument
which is the name of a variable, and fires a line of TextDNA which has the same name as
the value of that variable. You will usually set the value of the argument that is passed to

RepriseTextDNA using the 'Assign’' function.

For example:

100 < assign(CurrentDNA,"MyTextDNA") 100 >

*** The above line will assign the value 'MyTextDNA' to

%% the variable 'CurrentDNA'

100 < RepriseTextDNA(CurrentDNA) 100 >

*** The above line will fire a (randomly-selected) line of

*** TextDNA which has the subject 'MyTextDNA',

**% which i1s the _value_ of the variable 'CurrentDNA'.

RepriseTextDNA makes it possible to have repeated elements in an output text (for
example, choruses in a song- see the RobotJohnson files for many examples) and to have

a logical flow to texts, since you can set the values of future text in TextDNA that has

28

fired. For example, you might have two rules with the same name that lead to different

paths using the RepriseTextDNA function, as follows:

100 Subject(HeroineEnd) "And then she died." 100 <

RepriseTextDNA(DeadHeroineDNA) 100 >

keksk

100 Subject(HeroineEnd) "And then she married the handsome prince."

100 < RepriseTextDNA (PrincelsMarriedDNA) 100 >

In this case, prior rules might call either one of these two rules using the UseTextDNA
function, since they both have the same subject, 'HeroineEnd'. However, clearly things
are likely to develop differently if the heroine dies than if she marries the beautiful
prince. The DeadHeroineDNA variable contains the name of one set of TextDNA which
continues (or completes) the text with a dead heroine, while the PrincelsMarriedDNA
contains the names of a set of TextDNA which continues the text with marriage to a
handsome prince. Note that if there were only a single relevant rule-set in either case you
could just use the UseTextDNA function- the RepriseTextDNA function would be used

in this case if (as in real life!) there were multiple possible paths through life.

The GetRhyme function

The GetRhyme function takes two arguments: a variable name, and a suffix. It returns a

randomly-selected entry from a BrainFood file that has the name of the value of the

29

variable, plus the suffix. Although it may prove useful in many different circumstances,
its main purpose is to make it possible to write rhyming verse that uses any one of a
number of possible rhymes. If you define a number of files 'x.verb', 'x.noun',
'x.exclamation' (where 'x' takes multiple values- i.e. 'dog', 'cat’, 'pig') then you can always
call a word which rhymes in the proper place, without always writing poems which use

the same rhyme. For example:

100 Subject(AnimalPoemSetUp) < assign(Cur,"dog,cat,pig") 100 >

100 Subject(ShortAnimalPoem) "A" 100 < GetRhyme(Cur,noun) 100 >

"likes to" 100 < GetRhyme(Cur,verb) 100 >"!" 100

The first line of TextDNA sets the value of the variable 'cur' to either 'dog', 'cat', or 'pig'.
Assuming the existence of the appropriate BrainFood files (which, incidentally, do not
actually exist- you'd have to make them to run this example), the second line writes a
short poem alleging that the animal in question likes to do something that rhymes with its

name. One possible outcome of firing these two lines of TextDNA might be:

A pig likes to jig!

However, it is equally possible that the identical lines might produce:

A cat likes to bat!

30

The 'GetSubject' Function

The 'GetSubject' function can be used to personalize your JanusNode's creations with a
single name and matching pronoun and possessive. The function usually takes one of four
arguments: 'name','pronoun’,'possessive’, or 'object'. It will return the correct name,
pronoun, possessive, or object as determined by its question at start-up or by the
information garnered when you click on the 'Set Subject' button in the Control Panel. The
'GetSubject' function can also be used to change the name or sex of the current subject
from within a line of TextDNA. If the argument is 'he', then the gender of the subject will
be set to male. If the argument is 'she', then the gender if the argument will be set to
female. If the argument is anything else, then the name of the subject will be set to the

argument. In all three of these latter cases, nothing is returned.

Consider the following example:

100 < getSubject(Jane) 100 > < getSubject(name) 100 > s_verbs_from 100

< getSubject(possessive) 100 > s_nouns 100

This TextDNA will always change the subject's name to 'Jane', since the first call to the
'getSubject' function has 'Jane' as an argument, and is guaranteed to fire. After that, it will
print the new name, 'Jane', since the second call has 'name' as an argument, and is also
guaranteed to fire. This will be followed by a verb which takes the word 'from', a
possessive, and a noun. On possible outcome of thus TextDNA is the production of the

phrase:

Jane steals from her dog

31

However, note that this snippet of TextDNA might also print:

Jane steals from his dog

It will do so if the last subject was a male, since there is nothing in this TextDNA which
sets the sex of 'Jane' - and a JanusNode is far too dumb to figure things like that out for
itself. We could have remedied this by adding the function call '< getSubject(she) 100 >'

anywhere before the call '< getSubject(possessive) 100 >'. This would set the subject.

O

The 'backspace' function

The 'backspace' function exists to allow for the suppression of the space that a JanusNode
normally inserts between words: i.e. it deletes the last character that was output, and
prints from the new end. There are many situations in which this might be useful- for
example, if you want to write a string of TextDNA which uses parentheses, or which
creates compound words, or if you want to keep sentences in paragraphs. The function

takes no arguments and returns nothing.

Example:

100 "Imagine a" 100 s_nouns 100 < backspace() 100 > "-" 100 < backspace() 100

>s_nouns 100

This string of TextDNA will ask you to imagine a new compound noun. For example, it

might print:

32

Imagine a computer-coffin

You may certainly feel free to commercially develop this idea of death for the cyber-age.

'Backspace' has one counter-intuitive (but rather useful) behavior, which is that it will
erase as many spaces and returns as it finds (It will never erase more than one single non-
whitespace character, and will erase even a single one only if the last character printed

happens to be non-whitespace.

The 'quotation' function

The quotation function allows the user to use (straight or curly) quotation marks within a
string of TextDNA, so that your random texts can cite other random texts. It takes one of

n.n n.n

two arguments, "0" or "c", or no argument. If the argument is "0" the function will return
an opening curly quote. If it is "c¢" the argument will return a closing curly quote. If there

is no argument, the function return a straight quote.

Example:

100 "Try to understand this sentence: " 100 < quotation() 100 > TextDemonSPVP

100 TextDemonPNP 100 < quotation() 100 >

This TextDNA makes use of TextDemons, which are defined in the following section of

this documentation. This string of TextDNA will print quote a verb phrase and a noun

33

phrase following a verbatim introductory phrase. One outcome of the TextDNA is the

creation of the phrase:

Try to understand this sentence: "too many of us accommodate temptations".

Profound, huh?

The 'UseFont', 'UseStyle', and 'UseSize' Functions

You can also use built-in functions to control (or randomize) some aspects of text
presentation from with TextDNAs, using the 'Usefont', 'UseStyle', and 'UseSize'
functions. They all have the same syntax: each one takes either a valid argument for what
it does (e.g. a font name, a font style, or a font size respectively) and sets the current
display font to that size, style, and font. All three arguments may also take the argument

'random’, in which case the relevant value is set randomly.

Legal font styles are 'bold', 'italic', 'extend’, 'underline', 'outline' and 'plain'. Legal font
names and sizes are system-dependent; in general, you can usually use font sizes between

about 10 and 127.

Example: An example of a TextDNA using these functions is:

100 < UseFont(chicago) 100 > <UseSize(14) 100 > "This is" 100 <
UseSize(24) 100 > < UseStyle(italic) 100 > "really" 100 < UseSize(14)

100 > < UseStyle(plain) 100 > "dumb TextDNA." 100

34

This self-referential string of TextDNA will print the sentence 'This is really dumb

Tex®tDNRA.' just like that, in plain 14-point Chicago type, except for the word 'really’,

which will appear in italic 24-point Chicago.

The 'CapitalizeNext' Function

The 'CapitalizeNext' function takes no arguments. It simply ensures that the item which

follows it will start with a capital letter.

Example:

100 "This is a name:" 100 < CapitalizeNext() 100 > syllables 100 <

backspace() 100 > syllables 70

This string of TextDNA will print out "This is a name:" followed by a one or two-syllable

nonsense word which starts with a capital letter. One possible outcome is:

This is a name: Tishyag.

The 'BecomePassive' Function

The 'BecomePassive' function takes no arguments. When it is called, processing stops
and your JanusNode enters a passive, receptive state. It is important to understand that a
JanusNode must fire all functions before it can print a line of TextDNA, since most
functions are intended to return printable components of that line. For this reason, the

'BecomePassive' function should not appear with any text that you wish to print. If it

35

does, that text will never get printed, since your JanusNode will become passive before it

gets to printing it.

Here is an example of a full line of textDNA:

100 Subject(End) < BecomePassive() 100 >

When this line fires, processing will halt.

Limitations

JanusNode's ancestors had many limits. Almost all of these are now removed. There is no
limit to the quantity of TextDNA you can define, since you can have as many TextDNA
files as you wish, and you can have TextDNA files as large as you wish. Since TextDNA
can call specific lines of TextDNA, even when they are in another file, there is therefore

no theoretical limit to how complex your production's connections and structure can be.

Error-checking

JanusNodes do not stop processing for most errors (i.e. the most common errors of a mis-
named BrainFood file-name or a missing probability afer an element in TextDNA). If it
encounters an error of this type, a JanusNode will print an error message- or simply the
name of the element it could not find- in its output field and will attempt to keep

processing. It can almost always recover from such errors, but sometimes it will print

36

many error messages before it recovers. If your JanusNode prints nothing but error
messages, the most likely cause is either that your 'BrainFood' folder is missing or mis-
named, or that you have an extraneous element (or a missing element) early on in your

TextDNA (for example: a missing probability after a BrainFood file name).

Nesting TextDNA Elements

Previous versions of JanusNode did not allow nesting of repeats, functions, and
alternative. This has at last been remedied (fixing it was on the 'to do' list for over 15
years). You can nest repeats, functions, and alternatives within each other. For example,
the following silly rule, which was illegal under JanusNode 1.12, works fine under

JanusNode 2.x:

100 Subject() [{ [s_nouns 100] | [s_verbsnob 100] | people 100 [<

random(100) 100 >] | return 20 }] return 100 return 100

This allows for some very short rules to behave in complex ways, and should open up

some fairly wacky new text-generation possibilities. Go wild.

37

TextDemons

TextDemons are very similar to TextDNA.: in fact, they are TextDNA. The only
difference is that TextDemons are not directly chosen by a JanusNode from the field
where they are defined, but must rather be part of a TextDNA string. They thus act
exactly like macros, which is what they really are. TextDemons are defined in the
"TextDemons' file, which is contained the "TextDNA' directory. They have a similar
format to TextDNA, except that they don't begin with a global likelihood of being
chosen, but rather with a name. After the name a TextDemon can contain anything that

TextDNA can contain: indeed, their structure is identical except for the first item.

In versions of JanusNode after version 2.0, TextDemons no longer need to be explicitly
flagged as TextDemons. JanusNode 2.0 introduced a new ‘drop through’ technology for
TextDemons. If it is looking at an item in a rule, and it cannot find a BrainFood file that
corresponds to that item, a JanusNode assumes the item must be a TextDemon, and looks

in the TextDemons file for the item, no matter what its name.

JanusNodes also deal much more gracefully with missing items. If a JanusNode cannot
find either a BrainFood file or a TextDemon corresponding to given item, it prints a small
message to that effect inside the generated text, and carries on processing unperturbed.
Massive cascading failures of the type that were sometimes seen in JanusNode 1.12 after

an error was encountered are now much less likely to occur.

For example, we might define a TextDemon in the TextDemons file as follows:

MyFirstDemon p_nouns 100 p_verbsnob 100 [adverbs 50]

38

We can then use this TextDemon in a line of TextDNA, defined in a TextDNA file, as

follows:

100 TextDemonMyFirstTextDemon 100 "and" 100 p_verbsnob 100

The TextDemon defines a noun-verb phrase (possibly modified with one or more

adverbs). The above TextDNA might generate the sentence:

time changes warmly nightly and distorts

TextDemons provide great flexibility for your TextDNA. You can use them to define
constants, to define commonly-used text chunks, and to gain finer control over the way

units are repeated or chosen.

Every JanusNode ships with many pre-written TextDemons in the TextDemons file.
Since they are subject to change and open for tinkering by any user, they are not
documented officially. You will have to take a look at them if you want to see what they
do. However, you should be careful, since theTextDNA that is distributed with your
JanusNode depends on the TextDemons which came with it. You are welcome to delete
all the TextDemons that come with your JanusNode, but do not do so unless you
understand what you are doing, as much of your TextDNA will be non-functional without

the appropriate TextDemons.

39

Hello world!

By popular demand, JanusNodes now ship with a highly-commented tutorial set of
TextDNA, the HelloWorld rules. These move from the simplest to the more complex
TextDNA in a structured way. The rules are installed in your TextDNA directory, and so
may be run in the usual way. They are also appended to this document as a color-coded

Appendix 2.

Markov Chaining

Probabilistically re-creating texts using Markov chaining is a JanusNode's second major
function. The idea behind Markov chaining is very simple: for every element of a text,
compute the likelihood that any element is followed by any other element, then
reconstruct the text in a way which reflects the real probabilities, by stepping through the
probability table. For example, in the string 'ababca' the likelihood that 'b' will follow 'a'
is 100% while the likelihood that 'a' will follow 'b' is just 50%, since 'b' is followed
exactly once by 'a' and is also followed once by the letter 'c'. One probabilistic
reconstruction of this string might be 'bcabcaba’, since this string has (roughly) the same

statistical structure as the original one.

Any ordered sequence of elements can be Markov chained. Your JanusNode will Markov
chain any text. You can easily make and use your own Markov chain tables, as described

below. You can average together as many different texts as you like.

40

There are two steps to using Markov chaining.

The first is making the probability tables that describe a text. If you want to be able to use
a Markov table, it must be stored in the 'MarkovTables' folder inside the 'JanusNode
Resources' folder. JanusNode uses the same tables for both single (loose) and pairwise
(tight) Markov chaining, and it only looks in this folder for them. Although the tables are
editable text files, it is a bad idea to alter them in any way unless you are quite sure you
understand what you are doing, as it is very easy to introduce errors into these tables
which will render them useless. For example, you can't just add or delete words as you

like, as the table is full of dependencies.

'Markov chain a file' will create a new Markov chain table (as a text file) from a text
input file, and offer to store it in the proper directory for you. 'Markov chain output

window' does the same thing, but it uses the text in the output window as the input.

You will be offered the choice of chaining by word or letter. If you choose to chain by
word, JanusNode will use individual words as the elements in its probability tables. In
that case, the output will contain roughly the same words as the input file, in a
probabilistically -related order. If you choose to chain by letter, JanusNode will use
character strings, of length at least one, to make its tables. In that case, the created
probability table does not necessary reflect word boundaries. The output will be more or
less word-like, but perhaps contain some or many strings that are not actually words, but
which could be. You can choose how big the character strings should be (This
functionality has been promised JanusNode users for about 15 years; all things shall

come to he who waits.). If you choose a small number (1 or 2), the resultant output will

41

be very unnatural, especially if you chain the output loosely (see below). If you choose a
larger number (say, 3 to 5), the output will be more sensible, containing some coherent
phrases sprinkled with some odd constructions that are almost words. If you choose a
larger number, it will be increasingly unlikely that there is any way to reconstruct the text
except the way it actually was, and eventually you will be getting back exactly the text

that was used as input.

There is no limit to how big the input text or its associated Markov table can be, but it
does take a long time- sometimes hours- to make the Markov table if the input text is
very large, especially if you are chaining by character strings. JanusNode ships with an
odd assortment of large Markov chain tables, including the tables for the Tao Te Ching,
James Joyce's 'Ulysses' (a huge table) and Ludwig Wittgenstein's '"Tractatus Logico-

Philosophicus'

To use one or more of the pre-calculated tables stored in the 'MarkovTables' folder, click

on the 'Write from Markov files' button.

You will be offered a choice of 'tight' or 'loose' writing. 'Loose' means that any word pair
is guaranteed to contain words or strings that actually appeared together in that order in
the original text. 'Tight' means that any three contiguous words or strings are guaranteed
to have actually appeared together in that order in the original text. Tight writing is much
more sensible, but also much more plagiaristic, and may contain long passages cited
verbatim from the input file. The "Write loosely' function is your best bet for generating
original output, since the looseness of the algorithm makes it relatively unlikely that any

of the lines in the output appeared exactly in that form in the input file.

42

For technical reasons having to do with how JanusNode represents Markov chains, tight
writing will proceed much more quickly than loose writing, at least at first, and especially
if the Markov table is very large. However, be patient: in 'loose’' mode, JanusNode needs
to compile information as it chains. Once that information has been compiled it can be
accessed very quickly. Compiled information remains stored until you quit JanusNode, so
once you have run 'loose' chaining long enough for most or all words from each Markov

table to have been compiled, it can write very quickly.

You can select as many tables as you like from the folder: use the command key to make
a discontiguous selection. Your JanusNode will chain and randomly switch between input
tables as it produces a text. You will see it trying to switch and switching back, if you
look in the information window that appears when it is working. The output from using
several tables will resemble all of the input files (ie. the files from which the tables were
made) to some degree- it is something very much like a statistical average of those files.
You can of course also average different texts by putting them all into a single file (or
pasting them into the Output window), and building (and then writing from) a Markov

chain table for that file.

Although can certainly mix and match Markov chain files that were created by letter
mapping, note that there is no point to mixing files that specified a different string length,
because there is no way for the jump between files to made. If you want to mix different
texts chained by letter, you must create Markov table files that used the same letter

length.

43

Text Mapping

There are many computer programs whose purpose is to turn a text into a specific dialect.
These programs are usually extremely simple: they simply make a set of pre-defined
substitutions to the text. Your JanusNode has this ability, which can be completely
configured by the user. The 'Text Mapping' command uses information stored in files
inside the 'Mappings' folder (in the 'JanusNode Resources' folder) to make substitutions

to the text in the JanusNode window.

The mappings have their own simple grammar. In general, each line must have at least
two and at most three elements, separated by commas. The second element will be
substituted for the first element with a probability equal to the third element, if there is a
third element. (If there is not, it is assumed to be 100%). Elements may be subword
character strings, words, or multiword strings. The probabilities operate globally, not by
item- so once a mapping 'passes' the probability test and is chosen to be applied, it will be

applied to every item. For example, consider the following mapping:

you , thee, 20

This will be applied 20% of the time it is chosen (and every mapping will be chosen
exactly once, in random order, when the tool is applied). When it is applied, it will
replace the word 'you' with 'thee'. Note the space inserted after the word 'you'- this is to
ensure that the mapping is only applied when the whole word is 'you'- so, for example,
the word 'your' will not be changed to 'theer'. It would be so changed if there were no

space after the first word. If you leave a space after the first element, there is no need to

44

also leave one after the second element: JanusNode can figure this much out for itself.
Your JanusNode also deals by itself with the complications of capitalization and
punctuation of various kinds, so that it will recognize that the word '"You', 'you.', or 'you)'

(and so on) should be replaced in the above example with 'Thee', 'thee.' and 'thee)'.

Along with such two- or three-element substitutions, there are two other allowable forms
that may appear in a mapping: comments, and random exclamations. A comment is any
line beginning with an '*': it will simply be ignored when encountered, allowing you to
insert notes into your mappings. A random exclamation has the form 'random(X)'
(optionally followed by a percent probability), where 'X' is some text. When JanusNode
sees a line like this in a mapping file it will (if it passes the optional probability test)
randomly insert the text contained between the parentheses after the end of a random
number (one or more) of randomly-selected sentences in the text. You can use this to add

a little spice to your dialects.

JanusNode comes with a variety of mapping files that should serve as further examples,

and will hopefully make the idea clear.

Other tools

JanusNodes includes a variety of other tools for working with texts. In this section we

describe those tools.

45

eecummingsfication

The 'eecummingsfy' button will attempt to mimic the style of the great poet ee cummings,
using the available text in the output window. Text which has been eecummingsfied tends
to function 'more poetically' than text which has not been so treated. Like all the
randomization tools, eecummingsfication works probabilistically, so treating the same

text twice will not give precisely the same result.

EECummingsfication is user-configurable. It uses three files in the 'eecummings' folder
which is inside the 'JanusNode Resources' folder. You can add items to and delete items
from these files to customize the way eecummingsfication functions.
Eecummingsfication works by looking for subword elements which can be interestingly
'isolated' from their context. The file 'EndCuts' contains strings that may possibly be
isolated from the front if they appear in the text. (Since the tools apply by chance, there is
no guarantee that any isolation will actually be made.) For example, if the word 'be'
appears in the 'FrontCuts' file, then the word 'babe' might be split into 'ba' and return &
'be' when the tool is applied. Here the word 'be' is isolated from the front. The file
'EndCuts' contains strings that may (probabilstically) be isolated from the end if they
appear in the text. For example, if the word 'be' also appears in the 'EndCuts' file, then the
word 'bear' might be split into 'be' and return & 'ar' when the tool is applied. Here the
word 'be' is isolated from the end. Note that such isolation would not occur from the
appearance of the word 'be' in the 'FrontCuts' file. The 'FrameMe' file contains strings that

will be isolated from both sides at once' If 'be' appears in that file, then the word

46

'unbearable' might be split up as 'un', return, 'be', return, and 'arable'- with 'be' isolated (=

'framed') from both sides at once.

Dadafication

The 'Dadaify' button will randomly choose words from the original text and print them in
a randomly-arrayed manner. Some of you may recognize this as the orginal formula for
producing Dadaist poetry, as conceived of by the patron saint of JanusNodes, the Dadaist
Tristan Tzara: "And here you are a writer, infinitely original and endowed with a

sensibility that is charming though beyond the understanding of the vulgar".

Automatic TextDNA Generation

The 'Make TextDNA' button will attempt to turn any text in the JanusNode output
window into an executable line of TextDNA. If you are too lazy to write TextDNA, you
can simply write (or import) a sentence (or more) of the form that you would like to
produce, and let this function translate that sentence into TextDNA. The TextDNA
produced can then be used like any other line of TextDNA, if you paste it into a
TextDNA file. The function can only work if you use words in your template that appear
in your JanusNode's BrainFood files. You will be asked to select a subset of files to use.
Each recognized word in the output window text will be replaced with a call to a global

variable that is set to a word from the same file as the recognized word. If you use long

47

texts, you may wish to break them up afterwards into smaller rules connected by

'ChooseTextDNA' calls.

After you have generated a rule, you will be offered the option to run it right away. If you
accept this, your JanusNode will enter text-generation mode, and write text after the

current rule in the output window.

A JanusNode's rule-generating tool is not perfect. Because it blindly replaces words that
it finds in the order that it searches, it sometimes makes errors in deciding which Brain
Food file a word should come from. It has turned out to be (to me) surprisingly difficult
to generate rules that work perfectly every time, and the 'Make textDNA' function does
occasionally produce TextDNA that contains (usually very minor) errors. However, it
most often generates TextDNA which is either useable as it is, or in need of only minimal

repairs.

The 'Show File Loads' radio button

The 'Show file loads' button toggles whether or not JanusNode will print which rule files
it has opened. Usually this is undesirable, so the default is to have this button off. It can
be useful to know which file has been most recently loaded when debugging complex

rule sets.

The 'Display Mode' radio button
'Display Mode' is a special mode for using JanusNode in situations where you want it to

act like a slide player, showing one rule's output at a time in a large font, and displaying it

48

on-screen for a set period of time. Once displayed, output in display mode is not saved

and will disappear forever when the next line of output is shown.

The 'Alliterate' radio button

The 'Alliterate’ radio button turns on JanusNode's alliteration function (which can
also be controlled dynamically by a function call- see above). You will be given two
options when you turn it on: 'Selected' or 'Random'. If you choose 'Selected' you must
state a character, and JanusNode will alliterate only on that character. If you choose
'Random’, then JanusNode will pick a new character randomly whenever it chooses a new
line of TextDNA. In either case, JanusNode will use a word that begins with the
alliteration character whenever it can find one in any BrainFood file it uses. If it cannot
find a word with the current character, it will randomly use a word from the same
BrainFood file, as usual. This ensures alliteration when possible, but maintains coherence
(insofar as JanusNode is every coherent) if alliteration is not possible.

Note that alliteration does slow JanusNode down because it has to search through

each file for words beginning with the proper letter.

The Panic Button

You can always halt a JanusNode by hitting command-. (command-period).

The Robot Johnson Project Bugs
JanusNode ships with rules for generating blues songs in the style of the great blues

singer, Robert Johnson. These rules are very complex and have turned out to be in need

49

of some repairs for problems that were invisible in older version of JanusNode, but which
are now salient. I have occasionally seen these rules hang the program to a point where a
command-period was needed. I am not sure why this happens, but it appears to be

specific to those rather complex set of TextDNA files. This is a known bug.

Resources

I will post new resources for JanusNode (mapping files, rule files, Markov files) on the
JanusNode web site. I will also be posting upgrades there, so please visit occasionally to

look for new versions.

Bug Reports

If you find any bugs within JanusNode, let me know, at janus@janusnode.com. I will try
to fix outright bugs as rapidly as possible. I will add new functionality and bring the rules

up to snuff when I am able.

I don't enjoy writing documentation, and I have written this document very quickly. I am
sure that it is riddled with errors and omissions. If you have questions about using your

JanusNode or writing TextDNA, feel free to contact me.

50

If you would like to help move JanusNode into the future, please think about contributing
your rule and other resource sets, which are what makes a JanusNode do its magic. The

more, the merrier.

I have been supporting JanusNode- and its predecessor McPoet- for nearly 20 years now.
Throughout that time, as other interests and new obligations cut into my time, my main
motivation for improvement has always been user feedback. If I know people are using
this program, I work on it. If I forget that anyone else is using it, I don't work on it. My
thanks to those patient few who have repeatedly but gently reminded me that they were
waiting for an OS X version, and my apologies for taking so long to bring it into being:

Due to the insistent demands of real life, this version was several years in the making.

To quote another patron saint of Janus, Marcel Duchamp:

"Have fun, if not you'll bore us."

Chris Westbury

November, 2003

51

Appendix 1: Quotes related to Janus

"Every day we slaughter our finest impulses. That is why we get a heartache when we
read those lines written by the hand of a master and recognize them as our own, as the
tender shoots which we stifled because we lacked the faith to believe in our own powers,
our own criterion of truth and beauty. Every man, when he gets quiet, when he becomes
desperately honest with himself, is capable of uttering profound truths. We all derive
from the same source. There is no mystery about the origins of things. We are all part of
creation, all kings, all poets, all musicians; we have only to open up, only to discover
what is already there."
Henry Miller

Sexus

"If things are not clear, do nothing."
Gerald Loeb

The Battle For Investment Survival

"Stupidity well packaged can sound like wisdom."
Burton Malkiel

A Random Walk Down Wall Street

"How can men take joy in nonsense? They do so, wherever there is laughter- in fact,

one can almost say that wherever there is happiness there is joy in nonsense. It gives us

52

pleasure to turn experience into its opposite, to turn purposefulness into purposelessness,
necessity into arbitrariness, in such a way that the process does no harm and is performed
simply out of high spirits. For it frees us momentarily from the forces of necessity,
purposefulness, and experience, in which we usually see our merciless masters. We can
laugh and play when the unexpected (which usually frightens us and makes us tense) is
discharged without doing harm. It is the slaves' joy at Saturnalia."

Friedrich Nietzsche

Human, All Too Human

"It takes two to invent anything. The one makes up combinations; the other chooses,
recognizes what he wishes and what is important to him in the mass of things which the
former has imparted to him. What we call genius is much less the work of the first one
than the readiness of the second one to grasp the value of what has been laid before him
and to choose it. "

Paul Valery

"The poet is he who inspires, rather than he who is inspired."

Paul Eluard

53

"To make two bald statements: There's nothing sentimental about a machine, and: A
poem is a small (or large) machine made of words...When a man makes a poem...[1]t isn't
what he says that counts as a work of art, it's what he makes."

William Carlos Williams,

Introduction to The Wedge

"There was this kid poet, and he wrote and wrote. He rubbed the magic lamp until
the poetic self-abuse police threatened to come impound him. And still nothing happened.
The incantation seemed defective. Then they put the kid in front of this terminal and
initiated him into the secret syntax. A few simple rules, combined in a few elegant ways,
and blamm-o. The thing works. It runs. the world does move. The rules churn. The
descriptions step their way through their own internal logic. The lines of code set more
switches, change more states. Commands produce results.

The word made flesh.

Spiegel flinched. Don't mock me.

I'm not mocking."

Richard Powers

Plowing The Dark

"....chance alone is the source of every innovation, of all creation in the biosphere.
Pure chance, absolutely free but blind, at the very root of the stupendous edifice of
evolution: this central concept of modern biology is no longer one among other possible

or even conceivable hypotheses. It is today the sole conceivable hypothesis, the only one

54

compatible with observed and tested fact. And nothing warrants the supposition (or the
hope) that conceptions about this should, or ever could, be revised."
Jacques Monod

Chance & Necessity

"To chaos, law destroys; to law, chaos."

John Fowles

The Aristos
" ...'disorder, yes, my boy, disorder, is the quintessence of your very life! Of your
whole physical and metaphysical being! Why, it's your very soul...millions, trillions of
intricate folds...plunging deep down into the gray matter, complex, subjacent,
evasive...limitless! That's Harmony...all nature! A flight into the imponderable! And
nothing else! Put your wretched thoughts in order...! That's where to begin. Not with
grotesque, material, negative, obscene substitutions, but with the essential, that's what I'm
getting at. Are you going to assault the brain, correct it, scrape it, mutilate it, force it to
comply with an assortment of stupid rules? carve it up geometrically? recompose it
according to the rules of your excruciating idiocy?...Arrange it in slices? like an Epiphany
cake? with a prize in the middle. Tell me that. I'm asking you. Frankly? Would that by
any good? Would it make sense? Heaven help us! There's no doubt about it...your soul is
overwhelmed by errors. It makes you, like so many others, a unanimous nonentity. Great
instinctive disorder is the father of fertile thoughts! It's the beginning of

everything...Once the propitious moment has passed there's no hope...You, I'm afraid,

55

will spend your whole life in the garbage pail of reason...So much the worse for your!
You're a numbskull...a nearsighted, blind, preposterous, deaf, one-armed dolt!...befouling
my magnificent disorder with your vicious reflections. In Harmony...resides the worlds
only joy! The only deliverance! The only truth!...Harmony! Find Harmony, that's the
ticket!...Do you hear me...? Like a brain, neither more nor less! Order! Pah! Order! Rid
men of that word, that thing. Accustom yourself to Harmony and Harmony will reward
you. You'll find everything you've been looking for so long on the highways of the
world...and far more! Many other things...! A brain...that's what the whole lot of you will
find! Yes!...Have I made myself clear? That's not what you're after? You and your kind?
An inane ambush of pigeonholes! A barricade of brochures! A house of the dead! A
chartist necropolis! No, never! Here everything is in movement! Swarming with life!
You're not satisfied! It stirs, it quivers! Just touch it! Put out your little finger. Everything
comes to life. Everything trembles instantly! Asking only to surge up! to blossom! to
shine! I don't live by destroying. I take life as it comes! Do you take me for a cannibal...?
Never!...Bent on reducing it to my chickenshit concepts? Pah! Everything shakes?
Everything topples? Splendid! I have no desire to count stars 1! 2! 3! 4! and 5! I'm not
the kind that thinks he's entitled to do anything he pleases. The right to shrink! rectify!
corrupt! prune! transplant!...No!...where would I get it?...From the Infinite?...From life
itself? It's not natural, my boy! It's not natural! It's infamous meddling!...I prefer to keep
on good terms with the Universe! I take it as I find it!...I'll never rectify it! No! The
Universe is master of its own house! I understand it! It understands me! It gives me a

hand when I ask it! When I'm through with it, I drop it! That's the long and short of

56

it...It's a cosmogonic question! I have no orders to give! You have no orders! He has no
orders!...Bah! Bah! Bah!...'
He got sore as hell, like somebody who's definitely in the wrong... "
Louis-Ferdinand Céline

Death On The Installment Plan

"There are only two things in the world - semantics and nothing."
Erhard Werner
as quoted in: A. Bry

est

"Drawing on my fine command of language, I said nothing. "

Robert Charles Benchley

"...Brahman is the cause of the many. There is no other cause. And yet Brahman is
independent of the law of causation."
Shankara

Viveka-Chudamani

57

"As to what pertains to manifestation, the Principle causes the succession of its
phases, but is not this succession. It is the author of causes and effects, but is not the
causes and effects."

Chuang Tzu

The Book Of Chuang Tzu

"You cannot take hold of it, but equally you cannot get rid of it,
And while you can do neither, it goes on its own way."

Yung-chia Ta-shih

"A 'bit' of information is definable as a difference which makes a difference. Such
a difference, as it travels and undergoes successive transformation in a circuit, is an
elementary idea."
Gregory Bateson

Steps To An Ecology Of Mind

58

"Because information does not inform unless it is received, it does not exist until it
is consumed. It exists only in its assimilation and dies when it becomes redundant.
Information is intrinsically sacrificial. What seemed mad and illogical in the old order of
production becomes sane and logical in the new order of semiotic consumption. So, for
example, the 'insanity' of sacrifice, of giving something for nothing, becomes the royal
road to the sublime, not an altruistic act of self-denial."
James Ogilvy

Living Without A Goal

"A type has rightly come to be recognized as a mental realisation with no bone and flesh
embodiment;...the race becomes, as it were, a great amoeboid form, with its prepondering
variations thrown out as pseudopodia feeling towards adaptation."

Arthur Keith
The modes of origin of the carotid and subclavian arteries from the arch of

the aorta in some of the higher primates, Journal of Anatomy & Physiology, 29:453-58

59

"Power is nothing if not the power to choose...there is all the difference between
deciding and choosing...Perhaps every human act involves a chain of calculations of what
a system engineer would call decision nodes. But the difference between a mechanical act
and an authentically human one is that the latter terminates at a node whose decisive
parameter is not 'Because you told me to' but 'Because I chose to'. "

Joseph Weizenbaum

Computer Power And Human Reason

"we must look at all acts of perception as acts of creativity. "
Gerald Edelman
How We Know

Nobel Conference, 1985

"...effective searching procedures become, when the search-space is sufficiently
large, indistinguishable from true creativity."
Richard Dawkins
As quoted in: Kevin Kelly

Out Of Control

60

"The program found in the head of the average poet, after all, was written by the
poet's civilization, and that civilization was in turn programmed by the civilization which
preceded it, and so on to the very Dawn Of Time, when those bits of information that
concerned the poet-to-be were still swirling about in the primordial chaos of the cosmic
deep. Hence in order to program a poetry machine, one would first have to repeat the
entire universe from the beginning."

Stanislaw Lem

The Cyberiad

"The first umpire,. . .a man of small knowledge of how meanings are made, says |
calls 'em as they are. The second umpire, knowing something about human perception
and its limitations, says 'l calls 'em as I sees 'em.' The third umpire, having studied at
Cambridge with Wittgenstein himself, says 'Until I calls em, they ain't." "

Neil Postman

Crazy Talk, Stupid Talk

"Symptoms can become criteria."
Ludwig Wittgenstein

Philosophical Investigations

61

"'But how can a rule shew me what I have to do at this point? Whatever I do is, on
some interpretation, in accord with the rule.'- That is not what we ought to say, but rather:
any interpretation still hangs in the air along with what it interprets, and cannot give it
any support. Interpretations by themselves do not determine meaning. "

Ludwig Wittgenstein

Philosophical Investigations

"Our mistake is to look for an explanation where we ought to look at what happens
as a 'protophenomenon’. "
Ludwig Wittgenstein

Philosophical Investigations

"I think one reason why the attempt to find an explanation is wrong is that we have
only to put together in the right way what we know, without adding anything, and the
satisfaction we are trying to get from the explanation comes of itself."

Ludwig Wittgenstein

Remarks on Frazer's Golden Bough

62

"In the use of words one might distinguish 'surface grammar' from 'depth
grammar'.What immediately impresses itself upon us about the use of a word is the way
it is used in the construction of the sentence, the part of its use- one might say- that can be
taken in by the ear.------- And now compare the depth grammar, say of the word 'to
mean', with what its surface grammar would lead us to suspect. No wonder we find it
difficult to know our way about."

Ludwig Wittgenstein

Philosophical Investigations

"I caught this insight on the way and quickly seized the rather poor words that were
closest to hand to pin it down lest it fly away again. And now it has died of these arid
words and shakes and flaps in them - and I hardly know any more when I look at it how I
could ever have felt so happy when I caught this bird."

Friedrich Nietzsche

The Gay Science

"Once, when the holy man of Toganoo was journeying along a road he encountered
a man washing a horse by a river. 'Ashi, ashi', said the man. ['Ashi' means 'leg'. The man
is telling the horse to lift its leg.] The holy man stopped in his tracks and exclaimed 'How
inspiring! Some deed of virtue in a previous existence has brought this man
enlightenment! He is reciting the invocation aji,aji! [The priest believes or pretends that
the man is saying aji, the first letter of the Sanskrit alphabet, which has a religious

significance for the priest.] I wonder whose horse it might be? Such piety overcomes me!'

63

When he asked about the owner, the man replied 'The horse belongs to Lord Fushd.'
'Splendid!' cried the holy man. 'This is truly a case of ajo hon fush6. [The formula ajo hon
fush® means that there is no beginning of creation; that is, that the world has always
existed. The washing man's phonological prime brings the holy formula to the priest's
mind.] What a fortunate link you have established with the Way of the Buddha!' He
wiped away the tears of gratitude."

Kenko

Essays In Idleness

"Repetition always commits us to imagining an unknown cause, so true is it that in
the popular consciousness, the aleatory is always distributive, never repetitive: chance is
supposed to vary events; if it repeats them, it does so in order to signify something
through them; to repeat is to signify...."

Roland Barthes

Structure of the Fait-Divers

"Our mistake is to look for an explanation where we ought to look at what happens
as a 'protophenomenon’. "
Ludwig Wittgenstein

Philosophical Investigations

64

"Any arrangement of acts and events is comic which gives us, in a single
combination, the illusion of life and the distinct impression of a mechanical
arrangement."

Henri Bergson

Laughter

"A portion of the mind abundantly = commissured to other portions works almost
mechanically. It sinks to a condition of a railway junction. But a portion of mind almost
isolated, a spiritual peninsula, or cul-de-sac, is like a railway terminus. Now mental
commisures are habits. Where they abound, originality is not needed and is not found; but
where they are in defect, spontaneity is set free. Thus, the first step in the Lamarckian
evolution of mind is the putting of sundry thoughts into situations in which they are free
to play."

Charles Peirce

Evolutionary Love

"If something is boring after two minutes, try it for four. If still boring, then eight.
Then sixteen. Then thirty-two. Eventually one discovers that it is not boring at all."

John Cage

65

"But just think of the unfathomable laziness of man; all the schemes which are
supposed to keep him awake and watchful end up by putting him to sleep. We wear a
hairshirt the way we might wear a monocle; we sing matins the way other people play
golf. If only scientists today, instead of constantly inventing new means to make life
easier, would devote their resourcefulness to producing instruments for rousing man out
of his torpor! There are machine guns, of course, but that's going a bit too far..."

Rene Daumal

Mount Analogue

Happiness

I want objects

Like pagan alcohol

To scrawl the stomach of reason
And the cock's crow

To curse the sun

The devil's pastime

Whims what happiness

I proceed entirely

at random.

Francis Picabia

66

"All messages and parts of messages are like phrases or segments of equations
which a mathematician puts in brackets. Outside the brackets there maybe a qualifier or
multiplier which will alter the whole tenor of the phrase. Moreover, these qualifiers can
always be added, even years later. They do not have to precede the phrase inside the
brackets. Otherwise, there could be no psychotherapy...What exists today are only
messages about the past that we call memories, and these messages can always be framed
and modulated from moment to moment."

Gregory Bateson

Steps To An Ecology Of Mind

"That is how man's anguish ends- in masterly conjuring tricks: pure poetry, pure
music, pure thought. The last man- who has freed himself from all belief, from all
illusions, and has nothing more to expect or to fear- sees the clay of which he is made
reduced to spirit, and this spirit has no soil left for its roots, from which to draw its sap.
The last man has emptied himself; no more seed, no more excrement, no more blood.
Everything having turned into words, every set of words into musical jugglery, the last
man goes even further: he sits in his utter solitude and decomposes the music into mute
mathematical equations."

Nikos Kazantzakis

Zorba, The Greek

67

"We will never get a calculus to do all that a natural language such as Inuktitut or
French does because not all the moves in a natural language are analytic: sometimes
thoughts are connected by tonal associations; images; family resemblances. Not every
linguistic impulse is disintegrative; some clear and expressible thoughts aim at a tapestry,
rather than a complex, or a peak.

Many of our finest expressions slip through the lattice of even the most most
powerful algebra."

Jan Zwicky

Lyric Philosophy

"Who else but the naive poet is able to pucker his lips to kiss that old sourpuss, the
world? "
Irving Layton
As quoted in: The Montreal Gazette

October 19, 1985

68

Appendix 2: Hello World

** By popular demand, here's a sample file containing the 'Hello world' (Introductory
** programming examples) of textDNA. To run this file, put it into the folder called
** 'TextDNA' (inside the 'JanusNode Resources' folder), inside another folder,

** and select it from the menu underneath the picture button. (Your JanusNode ships
** with this file already installed)

ksk

** I have displayed the actual TextDNA in red.

k3k

** 1.) Hello

** Here is the simplest rule. It just says hello.

100 Subject(Examplel-Hello) "Hello!" 100 return 100

K3k

** 2.) HelloX

** Here 1s nearly the simplest possible rule: JanusNode's 'Hello world'. It just says Hello
** to many concrete things.

100 Subject(Example2-HelloX) "Hello" 100 s_nouns 100 "!" 100 return 100

ek

*% 3.) HelloHi

** This rule uses string constants and choice brackets to say 'hi' about as often

** as it says 'hello'

100 Subject(Example3-HelloHi) { "Hello" 100 | "Hi" 100 } s_nouns 100 "!" 100 return
100

ksk

** 4.) HelloHiAdjective

** This rule adds an optional adjective to whatever it is greeting

100 Subject(Example4-HelloHiAdjective) { "Hello" 100 | "Hi" 100 } adjectives 50
s_nouns 100 "!" 100 return 100

kek

% 5.) HelloHiPunctuated

** This rule allows more varied punctuation using the built-in 'punctuate' command
100 Subject(Example5-HelloHiPunctuated) { "Hello" 100 | "Hi" 100 } adjectives 50
s_nouns 100 punctuate 100 return 100

3k

** 6.) HelloGoodbyeToX

** Now we get fancier: Add in a variable, and say hello or hi to one variety of it, and
** g00d bye or bye to another, using the 'assign' and 'get' functions. Now we always end
** with a period, and add a return so that each pair is distinct in the output.

100 Subject(Example6-HelloGoodbyeToX) < assign(HelloObject,s_nouns) 100 > {
"Hello" 100 | "Hi" 100 } adjectives 50 < get(HelloObject) 100 > punctuate 100 return
100 { "Good bye" 100 | "Bye" 100 } adjectives 50 < get(HelloObject) 100 > "." 100
return 100 return 100

K3k

** 7.) HelloGoodbyeRhyme

69

** Fancier still- here's a rhyming rule. It selects a RhymePrefix using the command:

Hok < assign(HelloRhymePrefix,"ee,on,ink,ing,est") 100 >

** Then it chooses an actual word from one file named HelloRhymePrefix+noun

** using the command:

ok < GetRhyme(HelloRhymePrefix,noun) 100 >

** To add more RhymeFiles,just make them use a naming convention that ends

** each file-name with its type: (eg) 'noun' and 'verb' (and containing words

** appropriate to its suffix) and add the beginning affix on their

** file name to the 'assign(RhymeFile,"a,b,c")' command below (where a,b, and ¢ are
** examples of a prefix, and, by convention, signal the nature of their contents).

** The rhyme files of course, go in the 'BrainFood' directory.

** This rule also selects a single greeting (‘Hello', 'Hi'. 'Godbye', or 'Bye").

100 Subject(Example7-HelloGoodbyeRhyme) <
assign(HelloRhymePrefix,"ee,on,ink,ing,est") 100 > <
assign(Greeting,"Hello,Hi,Goodbye,Bye") 100 > < get(Greeting) 100 > adjectives 50 <
GetRhyme(HelloRhymePrefix,noun) 100 > punctuate 100 return 100 < get(Greeting) 100
> adjectives 50 < GetRhyme(HelloRhymePrefix,noun) 100 > "." 100 return 100

ek

** 8.) HelloGoodbyeMisterRhyme

** Same as 7.) above, but now we add a possessive in, using a TextDemon.

** TextDemons are pre-defined code chunks that are defined in the TextDemons file.
** The one used here- 'TextDemonCapitalizeFakeWord'- returns a capitalized fake word.
100 Subject(Example8-HelloGoodbyeMisterRhyme) <
assign(HelloRhymePrefix,"ee,on,ink,ing,est") 100 > <
assign(Greeting,"Hello,Hi,Goodbye,Bye") 100 > < assign(Title,"Mr.,Ms.,Miss,Mrs.")
100 > < assign(Title2,"Mr.,Ms.,Miss,Mrs.") 100 > < get(Greeting) 100 > < get(Title)
100 > TextDemonCapitalizeFakeWord 100 "'s" 100 adjectives 50 <
GetRhyme(HelloRhymePrefix,noun) 100 > punctuate 100 return 100 < get(Greeting) 100
> < get(Title2) 100 > TextDemonCapitalizeFakeWord 100 "'s" 100 adjectives 50 <
GetRhyme(HelloRhymePrefix,noun) 100 > "." 100 return 100

kek

**9.) HelloGoodbyePoem

** Finally, let's put it all together to write a silly little poem.

** The textdemon 'TextDemonReturnSpacing' just gives a return,

** plus an arbitrary number of spaces.

**] have replaced 'adjectives 100' with the more interesting substitution:

** {adjectives 100 | PhilosophicalAdjs 100 | p_verbsnob 100 "ing" 100 |

ok < GetRhyme(HelloRhymePrefix,verb) 100 > "ing" 100 }

ksk

100 Subject(Example9-HelloGoodbyePoem) <
assign(HelloRhymePrefix,"ee,on,ink,ing,est") 100 > <
assign(HelloGreeting,"Hello,Hi,Hey") 100 > <
assign(GoodbyeGreeting,"Goodbye,Bye") 100 > < assign(Title,"Mr.,Ms.,Miss,Mrs.")
100 > < assign(Syllablel,syllables) 100 > < assign(Syllable2,syllables) 100 > <
assign(Adjl,adjectives) 100 > return 100 "Here's" 100 < get(Title) 100 > <
CapitalizeNext() 100 > < Get(Syllable1) 100 > < Backspace() 100 > < Get(Syllable2)

70

100 > "'s" 100 { adjectives 100 | PhilosophicalAdjs 100 | p_verbsnob 100 "ing" 100 | <
GetRhyme(HelloRhymePrefix,verb) 100 > "ing" 100 | < get(Adj1) 100 > } <
GetRhyme(HelloRhymePrefix,noun) 100 > punctuate 100 TextDemonReturnSpacing 100
< get(HelloGreeting) 100 > < get(Title) 100 > < CapitalizeNext() 100 > < Get(Syllable1)
100 > < Backspace() 100 > < Get(Syllable2) 100 > "!" 100 TextDemonReturnSpacing
100 < get(HelloGreeting) 100 > { adjectives 100 | PhilosophicalAdjs 100 | p_verbsnob
100 "ing" 100 | < GetRhyme(HelloRhymePrefix,verb) 100 > "ing" 100 } <
GetRhyme(HelloRhymePrefix,noun) 100 > punctuate 100 TextDemonReturnSpacing 100
{ "That's no" 100 | "What a" 100 } { < Get(Adj1) 100 > | adjectives 50 |
PhilosophicalAdjs 50 | s_nouns 100 "ing" 100 } < GetRhyme(HelloRhymePrefix,noun)
100 > punctuate 100 TextDemonReturnSpacing 100 < get(GoodbyeGreeting) 100 > <
get(Title) 100 > < CapitalizeNext() 100 > < Get(Syllable1) 100 > < Backspace() 100 > <
Get(Syllable2) 100 > { "," 100 | "-" 100 [";" 100 | "!" 100 TextDemonReturnSpacing 100
}{"gogeta" 100 | "you need a" 100 } { adjectives 100 | PhilosophicalAdjs 100 |
p_verbsnob 100 "ing" 100 | < GetRhyme(HelloRhymePrefix,verb) 100 > "ing" 100 } <
GetRhyme(HelloRhymePrefix,noun) 100 > "!" 100 return 100 return 100

